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TD 5 : Quotient et dualité

Les exercices marqués d’un seront corrigés en TD, si le temps le permet.

Dans tout le TD, K désigne un corps quelconque.

Exercices importants

Exercice 1.
Donner un exemple de K-espace vectoriel E et de sous-espace vectoriel F de E où :

1. dim(F ) est finie et dim(E/F ) est infinie.
2. dim(F ) est infinie et dim(E/F ) est finie.
3. dim(F ) est infinie et dim(E/F ) est infinie.

Exercice 2. (Théorèmes d’isomorphisme)
Soient E un K-espace vectoriel, et F et G deux sous-espaces vectoriel de E. On note

π : E → E/F la projection canonique.
1. Montrer que l’application G 7→ π(G) induit une bijection croissante entre l’ensemble des

sous-espaces vectoriels de E contenant F , et l’ensemble des sous-espaces vectoriels de
E/F . Quelle est sa bijection réciproque ?

2. Construire un isomorphisme entre F/(F ∩ G) et (F + G)/G.
3. On suppose que F ⊂ G. Montrer que G/F s’identifie à un sous-espace vectoriel de E/F

et construire un isomorphisme entre (E/F )/(G/F ) et E/G.

Exercice 3. (Changement de base duale)
Soit E un K-espace vectoriel de dimension finie. Soient e = (ei)1⩽i⩽n, f = (fi)1⩽i⩽n deux

bases de E, et e∗ = (e∗
i )1⩽i⩽n, f ∗ = (f ∗

i )1⩽i⩽n leurs bases duales respectives. Soit A = (ai,j)1⩽i,j⩽n

la matrice de passage de e à f .

1. Pour j ∈ {1, . . . , n}, on écrit e∗
j =

n∑
i=1

αi,jf
∗
i , avec αi,j ∈ K pour 1 ⩽ i, j ⩽ n.

Déterminer A′ = (αi,j)1⩽i,j⩽n en fonction de A.
2. En déduire la matrice de passage de e∗ à f ∗ en fonction de A.

Exercice 4. (Bases antéduales)
1. Soit E un K-espace vectoriel de dimension finie. Soient (λ1, . . . , λn) une base de E∗ et

(λ∗
1, . . . , λ∗

n) sa base duale de (λ1, . . . , λn).
Montrer qu’à travers l’identification E∗∗ ∼= E, la base (λ∗

1, . . . , λ∗
n) s’identifie à une base

de E dont la base duale est (λ1, . . . , λn). On appelle cette base la base antéduale de
(λ1, . . . , λn).

2. Soit E = Kn[X] le K-espace vectoriel des polynômes de degré inférieur ou égal à n. Soient
a0, . . . , an des éléments distincts de K.
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(a) Montrer que les formes linéaires

evai
:
∣∣∣∣∣ E −→ K

P 7−→ P (ai)

forment une base de E∗.
(b) Déterminer la base antéduale de la base (eva0 , . . . , evan).

Exercice 5.
1. Soit I un ensemble et (Ei)i∈I une famille de K-espaces vectoriels. Pour tout i ∈ I, on

note si : Ei → ⊕
i∈I

Ei l’application canonique. Soit F un K-espace vectoriel. Montrer que
l’application

φ :

∣∣∣∣∣∣∣
HomK

(⊕
i∈I

Ei, F

)
−→ ∏

i∈I
HomK(Ei, F )

f 7−→ (f ◦ si)i∈I

est un isomorphisme de K-espaces vectoriels. En déduire un isomorphisme(⊕
i∈I

Ei

)∗
∼=
∏
i∈I

E∗
i .

2. Soit E = K[X]. Pour tout n ∈ N, on note e∗
n l’application linéaire vérifiant e∗

n(Xn) = 1
et e∗

n(X i) = 0 pour tout i ̸= n. Montrer que (e∗
n)n∈N n’est pas une base de E∗, bien que

(Xn)n∈N soit une base de E.
3. Montrer que E∗ est isomorphe à KN.

Exercice 6.
Pour tout A ∈ Mn(K), on définit la forme linéaire λA ∈ Mn(K)∗ par λA(M) = Tr(AM).

1. Montrer que l’application λ : Mn(K) → Mn(K)∗ définie par A 7→ λA est un isomorphisme.
2. Soit µ ∈ Mn(K)∗ telle que µ(AB) = µ(BA) pour tous A, B ∈ Mn(K). Montrer que µ est

proportionnelle à la trace.
3. Démontrer que si n ⩾ 2, tout hyperplan de Mn(K) contient une matrice inversible.

Exercice 7. (Formes linéaires et hyperplans)
Soit E un K-espace vectoriel.

1. (a) Pour F un sous-espace vectoriel de E, expliciter un isomorphisme (E/F )∗ ∼= F ⊥.

(b) En déduire que si H1, . . . , Hp sont des hyperplans de E, alors
p⋂

i=1
Hi est de codimen-

sion au plus p.
2. Soient f1, . . . , fp des formes linéaires de E et soit f ∈ E∗.

(a) Montrer que si f ∈ Vect(f1, . . . , fp) alors
p⋂

i=1
ker(fi) ⊂ ker(f).

(b) On suppose réciproquement que F :=
p⋂

i=1
ker(fi) est inclus dans ker(f). Justifier que

les fi et f induisent des formes linéaires f i et f sur E/F .
(c) En déduire que f ∈ Vect(f1, . . . , fp).

3. Énoncer un cas d’égalité pour le résultat de la question 1.(b).
4. Soit F un sous-espace vectoriel de E de codimension p. Montrer que F est l’intersection

de p hyperplans.
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Exercices supplémentaires

Exercice 8. (Naturalité)
Soient E et F deux K-espaces vectoriels, et soit f une application linéaire de E dans F .

On note τE (resp. τF ) l’application canonique E → E∗∗ (resp. F → F ∗∗). Montrer que le carré

E E∗∗

F F ∗∗

f

τE

ttf

τF

commute, c’est-à-dire que l’on a τF ◦ f = ttf ◦ τE.

Exercice 9. (Zornettes)
Soit (I,⩽) un ensemble ordonné. On dit qu’un sous-ensemble J de I est une chaîne de I si

l’ordre de I se restreint en un ordre total sur J . On dit que (I,⩽) est inductif si toute chaîne
de I admet un majorant.

Pour cet exercice, on admet l’énoncé suivant (appelé lemme de Zorn) :

Si (I,⩽) est un ensemble ordonné inductif,
alors I admet un élément maximal pour ⩽.

Le but de cet exercice est de montrer quelques conséquences de cet énoncé en algèbre linéaire.
Soit E un K-espace vectoriel.

1. (a) Montrer que l’ensemble des familles libres de E est inductif. Montrer qu’une famille
libre maximale est une base de E.

(b) Montrer le théorème de la base incomplète : Soit L une famille libre de E, et G ⊃ L
une famille génératrice. Il existe une famille B telle que B est une base de E et
L ⊂ B ⊂ G.

2. Soit F un sous-espace vectoriel de E. Montrer que F admet un supplémentaire dans E.
3. Montrer que l’application de bidualité τ : E → E∗∗ est injective.
4. Montrer qu’il existe un morphisme de groupe f : R → R qui n’est pas de la forme x 7→ ax.

Exercice 10. (Suites exactes et quotients)
Soient n ∈ N et (Ei)i∈J0,nK une suite de K-espaces vectoriels et soit pour chaque i ∈ J0, n−1K

une application linéaire fi : Ei → Ei+1. On représente visuellement une telle suite par le
diagramme

E0
f0→ E1

f1→ · · · fn−1→ En.

On dit que la suite est exacte si pour chaque i ∈ J1, n − 1K, on a Im(fi−1) = ker(fi). On appelle
suite exacte courte une suite exacte de la forme

0 → F → E → G → 0.

1. (a) Soit F un sous-espace vectoriel de E. Montrer que l’on a une suite exacte courte
0 → F → E → E/F → 0.

(b) Réciproquement, montrer que si on a une suite exacte courte 0 → F → E → G → 0,
alors F s’identifie à un sous-espace vectoriel de E, et que G est canoniquement
isomorphe à E/F .

2. Soit f : E → F une application linéaire entre deux espaces vectoriels. Montrer que l’on
a une suite exacte 0 → ker(f) → E

f→ F → F/Im(f) → 0. L’espace vectoriel F/Im(f)
s’appelle le conoyau de f , noté coker(f).
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